Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.028
1.
Protein Sci ; 33(6): e5004, 2024 Jun.
Article En | MEDLINE | ID: mdl-38723164

Dysregulation of RNA splicing processes is intricately linked to tumorigenesis in various cancers, especially breast cancer. Cdc2-like kinase 2 (CLK2), an oncogenic RNA-splicing kinase pivotal in breast cancer, plays a significant role, particularly in the context of triple-negative breast cancer (TNBC), a subtype marked by substantial medical challenges due to its low survival rates. In this study, we employed a structure-based virtual screening (SBVS) method to identify potential CLK2 inhibitors with novel chemical structures for treating TNBC. Compound 670551 emerged as a novel CLK2 inhibitor with a 50% inhibitory concentration (IC50) value of 619.7 nM. Importantly, Compound 670551 exhibited high selectivity for CLK2 over other protein kinases. Functionally, this compound significantly reduced the survival and proliferation of TNBC cells. Results from a cell-based assay demonstrated that this inhibitor led to a decrease in RNA splicing proteins, such as SRSF4 and SRSF6, resulting in cell apoptosis. In summary, we identified a novel CLK2 inhibitor as a promising potential treatment for TNBC therapy.


Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/genetics , Female , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Molecular Docking Simulation , Cell Proliferation/drug effects
2.
Nat Commun ; 15(1): 3901, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724505

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Cytoplasm , NF-KappaB Inhibitor alpha , NF-kappa B , Protein-Tyrosine Kinases , Transcription Factor RelA , Animals , Phosphorylation , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/genetics , Mice , Transcription Factor RelA/metabolism , Humans , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , NF-kappa B/metabolism , Cytoplasm/metabolism , Proteolysis , Cell Nucleus/metabolism , Virus Replication , HEK293 Cells , Signal Transduction , Mice, Inbred C57BL , Cytokines/metabolism , Active Transport, Cell Nucleus , Protein Serine-Threonine Kinases
3.
Cell Mol Life Sci ; 81(1): 215, 2024 May 13.
Article En | MEDLINE | ID: mdl-38739166

Down syndrome (DS) is a genetic disease characterized by a supernumerary chromosome 21. Intellectual deficiency (ID) is one of the most prominent features of DS. Central nervous system defects lead to learning disabilities, motor and language delays, and memory impairments. At present, a prenatal treatment for the ID in DS is lacking. Subcutaneous administration of synthetic preimplantation factor (sPIF, a peptide with a range of biological functions) in a model of severe brain damage has shown neuroprotective and anti-inflammatory properties by directly targeting neurons and microglia. Here, we evaluated the effect of PIF administration during gestation and until weaning on Dp(16)1Yey mice (a mouse model of DS). Possible effects at the juvenile stage were assessed using behavioral tests and molecular and histological analyses of the brain. To test the influence of perinatal sPIF treatment at the adult stage, hippocampus-dependent memory was evaluated on postnatal day 90. Dp(16)1Yey pups showed significant behavioral impairment, with impaired neurogenesis, microglial cell activation and a low microglial cell count, and the deregulated expression of genes linked to neuroinflammation and cell cycle regulation. Treatment with sPIF restored early postnatal hippocampal neurogenesis, with beneficial effects on astrocytes, microglia, inflammation, and cell cycle markers. Moreover, treatment with sPIF restored the level of DYRK1A, a protein that is involved in cognitive impairments in DS. In line with the beneficial effects on neurogenesis, perinatal treatment with sPIF was associated with an improvement in working memory in adult Dp(16)1Yey mice. Perinatal treatment with sPIF might be an option for mitigating cognitive impairments in people with DS.


Disease Models, Animal , Down Syndrome , Neurogenesis , Animals , Down Syndrome/drug therapy , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/complications , Down Syndrome/genetics , Neurogenesis/drug effects , Mice , Female , Pregnancy , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Dyrk Kinases , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Male , Cognition Disorders/drug therapy , Cognition Disorders/pathology
4.
Mol Biol Rep ; 51(1): 636, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727863

BACKGROUND: Osteoporosis (OP), characterized by compromised bone integrity and increased fracture risk, poses a significant health challenge. Circular RNAs (circRNAs) have emerged as crucial regulators in various pathophysiological processes, prompting investigation into their role in osteoporosis. This study aimed to elucidate the involvement of circCOX6A1 in OP progression and understand its underlying molecular mechanisms. The primary objective was to explore the impact of circCOX6A1 on bone marrow-derived mesenchymal stem cells (BMSCs) and its potential interactions with miR-512-3p and DYRK2. METHODS: GSE161361 microarray analysis was employed to assess circCOX6A1 expression in OP patients. We utilized in vitro and in vivo models, including BMSC cultures, osteogenic differentiation assays, and an OVX-induced mouse model of OP. Molecular techniques such as quantitative RT-PCR, western blotting, and functional assays like alizarin red staining (ARS) were employed to evaluate circCOX6A1 effects on BMSC proliferation, apoptosis, and osteogenic differentiation. The interaction between circCOX6A1, miR-512-3p, and DYRK2 was investigated through dual luciferase reporter assays, RNA immunoprecipitation, and RNA pull-down assays. RESULTS: CircCOX6A1 was found to be upregulated in osteoporosis patients, and its expression inversely correlated with osteogenic differentiation of BMSCs. CircCOX6A1 knockdown enhanced osteogenic differentiation, as evidenced by increased mineralized nodule formation and upregulation of osteogenic markers. In vivo, circCOX6A1 knockdown ameliorated osteoporosis progression in OVX mice. Mechanistically, circCOX6A1 acted as a sponge for miR-512-3p, subsequently regulating DYRK2 expression. CONCLUSION: This study provides compelling evidence for the role of circCOX6A1 in osteoporosis pathogenesis. CircCOX6A1 negatively regulates BMSC osteogenic differentiation through the miR-512-3p/DYRK2 axis, suggesting its potential as a therapeutic target for mitigating OP progression.


Cell Differentiation , Dyrk Kinases , Mesenchymal Stem Cells , MicroRNAs , Osteogenesis , Osteoporosis , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , RNA, Circular , Osteoporosis/genetics , Osteoporosis/metabolism , Osteoporosis/pathology , Osteogenesis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Cell Differentiation/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Humans , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Mice , Mesenchymal Stem Cells/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Female , Cell Proliferation/genetics , Disease Models, Animal , Apoptosis/genetics , Middle Aged
6.
Pathol Oncol Res ; 30: 1611715, 2024.
Article En | MEDLINE | ID: mdl-38605928

The complex therapeutic strategy of non-small cell lung cancer (NSCLC) has changed significantly in recent years. Disease-free survival increased significantly with immunotherapy and chemotherapy registered in perioperative treatments, as well as adjuvant registered immunotherapy and targeted therapy (osimertinib) in case of EGFR mutation. In oncogenic-addictive metastatic NSCLC, primarily in adenocarcinoma, the range of targeted therapies is expanding, with which the expected overall survival increases significantly, measured in years. By 2021, the FDA and EMA have approved targeted agents to inhibit EGFR activating mutations, T790 M resistance mutation, BRAF V600E mutation, ALK, ROS1, NTRK and RET fusion. In 2022, the range of authorized target therapies was expanded. With therapies that inhibit KRASG12C, EGFR exon 20, HER2 and MET. Until now, there was no registered targeted therapy for the KRAS mutations, which affect 30% of adenocarcinomas. Thus, the greatest expectation surrounded the inhibition of the KRAS G12C mutation, which occurs in ∼15% of NSCLC, mainly in smokers and is characterized by a poor prognosis. Sotorasib and adagrasib are approved as second-line agents after at least one prior course of chemotherapy and/or immunotherapy. Adagrasib in first-line combination with pembrolizumab immunotherapy proved more beneficial, especially in patients with high expression of PD-L1. In EGFR exon 20 insertion mutation of lung adenocarcinoma, amivantanab was registered for progression after platinum-based chemotherapy. Lung adenocarcinoma carries an EGFR exon 20, HER2 insertion mutation in 2%, for which the first targeted therapy is trastuzumab deruxtecan, in patients already treated with platinum-based chemotherapy. Two orally administered selective c-MET inhibitors, capmatinib and tepotinib, were also approved after chemotherapy in adenocarcinoma carrying MET exon 14 skipping mutations of about 3%. Incorporating reflex testing with next-generation sequencing (NGS) expands personalized therapies by identifying guideline-recommended molecular alterations.


Acetonitriles , Adenocarcinoma of Lung , Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Piperazines , Pyrimidines , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins/genetics , Mutation , Adenocarcinoma/genetics , ErbB Receptors/genetics
7.
J Virol ; 98(5): e0034724, 2024 May 14.
Article En | MEDLINE | ID: mdl-38651897

Angiotensin converting enzyme 2 (ACE2), the host receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is differentially expressed in a wide variety of tissues and cell types. The expression of ACE2 is under tight regulation, but the mechanisms regulating ACE2 expression have not yet been well defined. Through a genome-wide CRISPR knockout screen, we discovered that host factors TRAF3, DYRK1A, and RAD54L2 (TDR) form a complex to regulate the expression of ACE2. Knockout of TRAF3, DYRK1A, or RAD54L2 reduces the mRNA levels of ACE2 and inhibits the cellular entry of SARS-CoV-2. On the other hand, SARS-CoV-2 continuously evolves by genetic mutations for the adaption to the host. We have identified mutations in spike (S) (P1079T) and nucleocapsid (N) (S194L) that enhance the replication of SARS-CoV-2 in cells that express ACE2 at a low level. Our results have revealed the mechanisms for the transcriptional regulation of ACE2 and the adaption of SARS-CoV-2. IMPORTANCE: The expression of ACE2 is essential for the entry of SARS-CoV-2 into host cells. We identify a new complex-the TDR complex-that acts to maintain the abundance of ACE2 in host cells. The identification and characterization of the TDR complex provide new targets for the development of therapeutics against SARS-CoV-2 infection. By analysis of SARS-CoV-2 virus replicating in cells expressing low levels of ACE2, we identified mutations in spike (P1079T) and nucleocapsid (S194L) that overcome the restriction of limited ACE2. Functional analysis of these key amino acids in S and N extends our knowledge of the impact of SARS-CoV-2 variants on virus infection and transmission.


Angiotensin-Converting Enzyme 2 , COVID-19 , Protein Serine-Threonine Kinases , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , COVID-19/virology , COVID-19/metabolism , COVID-19/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Virus Internalization , HEK293 Cells , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/genetics , Mutation , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
8.
Mol Genet Genomic Med ; 12(4): e2423, 2024 Apr.
Article En | MEDLINE | ID: mdl-38622850

BACKGROUND: Inflammatory myofibroblastic tumors (IMTs) are rare mesenchymal soft tissue sarcomas that often present diagnostic challenges due to their wide and varied morphology. A subset of IMTs have fusions involving ALK or ROS1. The role of next-generation sequencing (NGS) for classification of unselected sarcomas remains controversial. METHODS AND RESULTS: We report a case of a metastatic sarcoma in a 34-year-old female originally diagnosed as an unclassified spindle cell sarcoma with myofibroblastic differentiation and later reclassified as IMT after NGS revealed a TFG-ROS1 rearrangement. Histologically, the neoplasm had spindle cell morphology with a lobulated to focally infiltrative growth pattern with scant inflammatory cell infiltrate. Immunohistochemistry demonstrated focal desmin and variable smooth muscle actin staining but was negative for SOX10, S100, and CD34. Fluorescence in situ hybridization was negative for USP6 or ALK gene rearrangements. NGS revealed a TFG-ROS1 rearrangement and the patient was treated with crizotinib with clinical benefit. CONCLUSIONS: We discuss the role of NGS as well as its potential benefit in patients with unresectable, ALK-negative metastatic disease. Considering this case and previous literature, we support the use of NGS for patients requiring systemic treatment.


Protein-Tyrosine Kinases , Sarcoma , Female , Humans , Adult , Protein-Tyrosine Kinases/genetics , Anaplastic Lymphoma Kinase/genetics , In Situ Hybridization, Fluorescence , Proto-Oncogene Proteins/genetics , Sarcoma/drug therapy , Sarcoma/genetics , Sarcoma/pathology , High-Throughput Nucleotide Sequencing , Ubiquitin Thiolesterase/genetics , Vesicular Transport Proteins/genetics
10.
Dev Biol ; 511: 63-75, 2024 Jul.
Article En | MEDLINE | ID: mdl-38621649

Loss of function variations in the dual specificity tyrosine-phosphorylation-regulated kinase 1 A (DYRK1A) gene are associated with craniofacial malformations in humans. Here we characterized the effects of deficient DYRK1A in craniofacial development using a developmental model, Xenopus laevis. Dyrk1a mRNA and protein were expressed throughout the developing head and both were enriched in the branchial arches which contribute to the face and jaw. Consistently, reduced Dyrk1a function, using dyrk1a morpholinos and pharmacological inhibitors, resulted in orofacial malformations including hypotelorism, altered mouth shape, slanted eyes, and narrower face accompanied by smaller jaw cartilage and muscle. Inhibition of Dyrk1a function resulted in misexpression of key craniofacial regulators including transcription factors and members of the retinoic acid signaling pathway. Two such regulators, sox9 and pax3 are required for neural crest development and their decreased expression corresponds with smaller neural crest domains within the branchial arches. Finally, we determined that the smaller size of the faces, jaw elements and neural crest domains in embryos deficient in Dyrk1a could be explained by increased cell death and decreased proliferation. This study is the first to provide insight into why craniofacial birth defects might arise in humans with variants of DYRK1A.


Dyrk Kinases , Gene Expression Regulation, Developmental , Neural Crest , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Xenopus Proteins , Xenopus laevis , Animals , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Xenopus laevis/embryology , Xenopus laevis/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Neural Crest/embryology , Neural Crest/metabolism , Xenopus Proteins/metabolism , Xenopus Proteins/genetics , Signal Transduction , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/embryology , Craniofacial Abnormalities/metabolism , Branchial Region/embryology , Branchial Region/metabolism , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/embryology
11.
Exp Cell Res ; 438(1): 114026, 2024 May 01.
Article En | MEDLINE | ID: mdl-38604522

The emergence of AR-V7, a truncated isoform of AR upon androgen deprivation therapy treatment, leads to the development of castration resistant prostate cancer (CRPC). Understanding mechanisms that regulate AR-V7 expression is critical for developing newer therapeutic strategies. In this study, we have investigated the regulation of AR-V7 during cell cycle and identified a distinct pattern of periodic fluctuation, peaking during G2/M phase. This fluctuation correlates with the expression of Cdc-2 like kinase 1 (CLK1) and phosphorylated serine/arginine-rich splicing factor 1 (p-SRSF1) during these phases, pointing towards their role in AR-V7 generation. Functional assays reveal that CLK1 knockdown prolongs the S phase, leading to altered cell cycle distribution and increased accumulation of AR-V7 and pSRSF1 in G1/S phase. Conversely, CLK1 overexpression rescues AR-V7 and p-SRSF1 levels in the G2/M phase, consistent with observed cell cycle alterations upon AR-V7 knockdown and overexpression in CRPC cells. Furthermore, overexpression of kinase-deficient CLK1 mutant leads to diminished AR-V7 levels during G2/M, underlining the essential contribution of CLK1's kinase activity in modulating AR-V7 expression. Collectively, our findings, for the first time, show periodic regulation of AR-V7 expression, its effect on cell cycle progression and the critical role of CLK1-pSRSF1 axis in modulating AR-V7 expression throughout the cell cycle.


Prostatic Neoplasms, Castration-Resistant , Protein-Tyrosine Kinases , Receptors, Androgen , Serine-Arginine Splicing Factors , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Serine-Arginine Splicing Factors/metabolism , Serine-Arginine Splicing Factors/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , G2 Phase/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Phosphorylation , Cell Proliferation/genetics , G2 Phase Cell Cycle Checkpoints/genetics
13.
Cancer Sci ; 115(5): 1656-1664, 2024 May.
Article En | MEDLINE | ID: mdl-38450844

Driver oncogenes are investigated upfront at diagnosis using multi-CDx systems with next-generation sequencing techniques or multiplex reverse-transcriptase polymerase chain reaction assays. Additionally, from 2019, comprehensive genomic profiling (CGP) assays have been available in Japan for patients with advanced solid tumors who had completed or were expected to complete standard chemotherapy. These assays are expected to comprehensively detect the driver oncogenes, especially for patients with non-small cell lung cancer (NSCLC). However, there are no reports of nationwide research on the detection of driver oncogenes in patients with advanced NSCLC who undergo CGP assays, especially in those with undetected driver oncogenes at diagnosis. In this study, we investigated the proportion of driver oncogenes detected in patients with advanced NSCLC with undetectable driver oncogenes at initial diagnosis and in all patients with advanced NSCLC who underwent CGP assays. We retrospectively analyzed data from 986 patients with advanced NSCLC who underwent CGP assays between August 2019 and March 2022, using the Center for Cancer Genomics and Advanced Therapeutics database. The proportion of driver oncogenes newly detected in patients with NSCLC who tested negative for driver oncogenes at diagnosis and in all patients with NSCLC were investigated. Driver oncogenes were detected in 451 patients (45.7%). EGFR was the most common (16.5%), followed by KRAS (14.5%). Among the 330 patients with undetected EGFR, ALK, ROS1, and BRAF V600E mutations at diagnosis, 81 patients (24.5%) had newly identified driver oncogenes. CGP assays could be useful to identify driver oncogenes in patients with advanced NSCLC, including those initially undetected, facilitating personalized treatment.


Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Mutation , Oncogenes , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Female , Aged , Oncogenes/genetics , Middle Aged , Anaplastic Lymphoma Kinase/genetics , Retrospective Studies , Japan , High-Throughput Nucleotide Sequencing/methods , ErbB Receptors/genetics , Aged, 80 and over , Adult , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins/genetics , Gene Expression Profiling/methods , Genomics/methods , Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/genetics
14.
Virchows Arch ; 484(4): 677-686, 2024 Apr.
Article En | MEDLINE | ID: mdl-38492039

The current study assessed the performance of the fully automated RT-PCR-based Idylla™ GeneFusion Assay, which simultaneously covers the advanced non-small cell lung carcinoma (aNSCLC) actionable ALK, ROS1, RET, and MET exon 14 rearrangements, in a routine clinical setting involving 12 European clinical centers. The Idylla™ GeneFusion Assay detects fusions using fusion-specific as well as expression imbalance detection, the latter enabling detection of uncommon fusions not covered by fusion-specific assays. In total, 326 archival aNSCLC formalin-fixed paraffin-embedded (FFPE) samples were included of which 44% were resected specimen, 46% tissue biopsies, and 9% cytological specimen. With a total of 179 biomarker-positive cases (i.e., 85 ALK, 33 ROS1, 20 RET fusions and 41 MET exon 14 skipping), this is one of the largest fusion-positive datasets ever tested. The results of the Idylla™ GeneFusion Assay were compared with earlier results of routine reference technologies including fluorescence in situ hybridization, immunohistochemistry, reverse-transcription polymerase chain reaction, and next-generation sequencing, establishing a high sensitivity/specificity of 96.1%/99.6% for ALK, 96.7%/99.0% for ROS1, 100%/99.3% for RET fusion, and 92.5%/99.6% for MET exon 14 skipping, and a low failure rate (0.9%). The Idylla™ GeneFusion Assay was found to be a reliable, sensitive, and specific tool for routine detection of ALK, ROS1, RET fusions and MET exon 14 skipping. Given its short turnaround time of about 3 h, it is a time-efficient upfront screening tool in FFPE samples, supporting rapid clinical decision making. Moreover, expression-imbalance-based detection of potentially novel fusions may be easily verified with other routine technologies without delaying treatment initiation.


Anaplastic Lymphoma Kinase , Carcinoma, Non-Small-Cell Lung , Exons , Lung Neoplasms , Oncogene Proteins, Fusion , Protein-Tyrosine Kinases , Proto-Oncogene Proteins c-met , Proto-Oncogene Proteins c-ret , Proto-Oncogene Proteins , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Proto-Oncogene Proteins c-ret/genetics , Anaplastic Lymphoma Kinase/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-met/genetics , Exons/genetics , Proto-Oncogene Proteins/genetics , Oncogene Proteins, Fusion/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/analysis , Gene Rearrangement , In Situ Hybridization, Fluorescence/methods , Multiplex Polymerase Chain Reaction
15.
Acta Neuropathol Commun ; 12(1): 40, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38481314

DNA methylation is crucial for chromatin structure and gene expression and its aberrancies, including the global "hypomethylator phenotype", are associated with cancer. Here we show that an underlying mechanism for this phenotype in the large proportion of the highly lethal brain tumor glioblastoma (GBM) carrying receptor tyrosine kinase gene mutations, involves the mechanistic target of rapamycin complex 2 (mTORC2), that is critical for growth factor signaling. In this scenario, mTORC2 suppresses the expression of the de novo DNA methyltransferase (DNMT3A) thereby inducing genome-wide DNA hypomethylation. Mechanistically, mTORC2 facilitates a redistribution of EZH2 histone methyltransferase into the promoter region of DNMT3A, and epigenetically represses the expression of DNA methyltransferase. Integrated analyses in both orthotopic mouse models and clinical GBM samples indicate that the DNA hypomethylator phenotype consistently reprograms a glutamate metabolism network, eventually driving GBM cell invasion and survival. These results nominate mTORC2 as a novel regulator of DNA hypomethylation in cancer and an exploitable target against cancer-promoting epigenetics.


Brain Neoplasms , Glioblastoma , Mice , Animals , Glioblastoma/pathology , Cell Line, Tumor , Mechanistic Target of Rapamycin Complex 2/genetics , Mechanistic Target of Rapamycin Complex 2/metabolism , DNA Methylation , Phenotype , Brain Neoplasms/pathology , DNA/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Protein-Tyrosine Kinases/genetics
16.
Biochim Biophys Acta Gen Subj ; 1868(6): 130600, 2024 Jun.
Article En | MEDLINE | ID: mdl-38508285

OBJECTIVES: Lung cancer is a leading cause of cancer-related mortality and remains one of the most poorly prognosed disease worldwide. Therefore, it is necessary to identify novel molecular markers with potential therapeutic effects. Recent findings have suggested that dual-specificity tyrosine-regulated kinase 2 (DYRK2) plays a tumor suppressive role in colorectal, breast, and hepatic cancers; however, its effect and mechanism in lung cancer remain poorly understood. Therefore, this study aimed to investigate the tumor-suppressive role and molecular mechanism of DYRK2 in lung adenocarcinoma (LUAD) by in vitro experiments and xenograft models. MATERIALS AND METHODS: The evaluation of DYRK2 expression was carried out using lung cancer cell lines and normal bronchial epithelial cells. Overexpression of DYRK2 was induced by an adenovirus vector, and cell proliferation was assessed through MTS assay and Colony Formation Assay. Cell cycle analysis was performed using flow cytometry. Additionally, proliferative capacity was evaluated in a xenograft model by subcutaneously implanting A549 cells into SCID mice (C·B17/Icr-scidjcl-scid/scid). RESULTS: Immunoblotting assays showed that DYRK2 was downregulated in most LUAD cell lines. DYRK2 overexpression using adenovirus vectors significantly suppressed cell proliferation compared with that in the control group. Additionally, DYRK2 overexpression suppressed tumor growth in a murine subcutaneous xenograft model. Mechanistically, DYRK2 overexpression inhibited the proliferation of LUAD cells via p21-mediated G1 arrest, which was contingent on p53. CONCLUSION: Taken together, these findings suggest that DYRK2 may serve as potential prognostic biomarker and therapeutic target for LUAD.


Adenocarcinoma of Lung , Cell Proliferation , Dyrk Kinases , G1 Phase Cell Cycle Checkpoints , Lung Neoplasms , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , Animals , Humans , Mice , A549 Cells , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/genetics , Cell Line, Tumor , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Mice, SCID , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/genetics , Xenograft Model Antitumor Assays
17.
Int J Mol Sci ; 25(6)2024 Mar 18.
Article En | MEDLINE | ID: mdl-38542393

Acute myeloid leukemia (AML) is hallmarked by the clonal proliferation of myeloid blasts. Mutations that result in the constitutive activation of the fms-like tyrosine kinase 3 (FLT3) gene, coding for a class III receptor tyrosine kinase, are significantly associated with this heterogeneous hematologic malignancy. The fms-related tyrosine kinase 3 ligand binds to the extracellular domain of the FLT3 receptor, inducing homodimer formation in the plasma membrane, leading to autophosphorylation and activation of apoptosis, proliferation, and differentiation of hematopoietic cells in bone marrow. In the present study, we evaluated the association of FLT3 as a significant biomarker for AML and tried to comprehend the effects of specific variations on the FLT3 protein's structure and function. We also examined the effects of I836 variants on binding affinity to sorafenib using molecular docking. We integrated multiple bioinformatics tools, databases, and resources such as OncoDB, UniProt, COSMIC, UALCAN, PyMOL, ProSA, Missense3D, InterProScan, SIFT, PolyPhen, and PredictSNP to annotate the structural, functional, and phenotypic impact of the known variations associated with FLT3. Twenty-nine FLT3 variants were analyzed using in silico approaches such as DynaMut, CUPSAT, AutoDock, and Discovery Studio for their impact on protein stability, flexibility, function, and binding affinity. The OncoDB and UALCAN portals confirmed the association of FLT3 gene expression and its mutational status with AML. A computational structural analysis of the deleterious variants of FLT3 revealed I863F mutants as destabilizers of the protein structure, possibly leading to functional changes. Many single-nucleotide variations in FLT3 have an impact on its structure and function. Thus, the annotation of FLT3 SNVs and the prediction of their deleterious pathogenic impact will facilitate an insight into the tumorigenesis process and guide experimental studies and clinical implications.


Leukemia, Myeloid, Acute , fms-Like Tyrosine Kinase 3 , Humans , fms-Like Tyrosine Kinase 3/genetics , Molecular Docking Simulation , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Sorafenib/pharmacology , Mutation , Protein-Tyrosine Kinases/genetics
18.
Blood Adv ; 8(8): 1981-1990, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38507738

ABSTRACT: Bruton's tyrosine kinase (BTK) is an enzyme needed for B-cell survival, and its inhibitors have become potent targeted medicines for the treatment of B-cell malignancies. The initial activation event of cytoplasmic protein-tyrosine kinases is the phosphorylation of a conserved regulatory tyrosine in the catalytic domain, which in BTK is represented by tyrosine 551. In addition, the tyrosine 223 (Y223) residue in the SRC homology 3 (SH3) domain has, for more than 2 decades, generally been considered necessary for full enzymatic activity. The initial recognition of its potential importance stems from transformation assays using nonlymphoid cells. To determine the biological significance of this residue, we generated CRISPR-Cas-mediated knockin mice carrying a tyrosine to phenylalanine substitution (Y223F), maintaining aromaticity and bulkiness while prohibiting phosphorylation. Using a battery of assays to study leukocyte subsets and the morphology of lymphoid organs, as well as the humoral immune responses, we were unable to detect any difference between wild-type mice and the Y223F mutant. Mice resistant to irreversible BTK inhibitors, through a cysteine 481 to serine substitution (C481S), served as an additional immunization control and mounted similar humoral immune responses as Y223F and wild-type animals. Collectively, our findings suggest that phosphorylation of Y223 serves as a useful proxy for phosphorylation of phospholipase Cγ2 (PLCG2), the endogenous substrate of BTK. However, in contrast to a frequently held conception, this posttranslational modification is dispensable for the function of BTK.


Protein-Tyrosine Kinases , src Homology Domains , Mice , Animals , Agammaglobulinaemia Tyrosine Kinase , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Amino Acid Sequence , Tyrosine
19.
Thorac Cancer ; 15(11): 895-905, 2024 Apr.
Article En | MEDLINE | ID: mdl-38456253

BACKGROUND: Programmed death ligand-1 (PD-L1) expression is a well-known predictive biomarker of response to immune checkpoint blockade in non-small cell lung cancer (NSCLC). However, there is limited evidence of the relationship between PD-L1 expression, clinicopathological features, and their association with major driver mutations in NSCLC patients in Latin America. METHODS: This retrospective study included patients from Argentina with advanced NSCLC, and centralized evaluation of PD-L1 expression concurrently with genomic alterations in the driver genes EGFR, ALK, ROS1, BRAF, and/or KRAS G12C in FFPE tissue samples. RESULTS: A total of 10 441 patients with advanced NSCLC were analyzed. Adenocarcinoma was the most frequent histological subtype (71.1%). PD-L1 expression was categorized as PD-L1 negative (45.1%), PD-L1 positive low-expression 1%-49% (32.3%), and PD-L1 positive high-expression ≥50% (22.6%). Notably, current smokers and males were more likely to have tumors with PD-L1 tumor proportion score (TPS) ≥50% and ≥ 80% expression, respectively (p < 0.001 and p = 0.013). Tumors with non-adenocarcinoma histology had a significantly higher median PD-L1 expression (p < 0.001). Additionally, PD-L1 in distant nodes was more likely ≥50% (OR 1.60 [95% CI: 1.14-2.25, p < 0.01]). In the multivariate analysis, EGFR-positive tumors were more commonly associated with PD-L1 low expression (OR 0.62 [95% CI: 0.51-0.75], p < 0.01), while ALK-positive tumors had a significant risk of being PD-L1 positive (OR 1.81 [95% CI: 1.30-2.52], p < 0.01). CONCLUSIONS: PD-L1 expression was associated with well-defined clinicopathological and genomic features. These findings provide a comprehensive view of the expression of PD-L1 in patients with advanced NSCLC in a large Latin American cohort.


Adenocarcinoma , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Male , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Protein-Tyrosine Kinases/genetics , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Retrospective Studies , Anaplastic Lymphoma Kinase/genetics , Proto-Oncogene Proteins/genetics , Adenocarcinoma/genetics , Mutation , ErbB Receptors/genetics
20.
J Transl Med ; 22(1): 234, 2024 Mar 03.
Article En | MEDLINE | ID: mdl-38433235

INTRODUCTION: The study of resistance-causing mutations in oncogene-driven tumors is fundamental to guide clinical decisions. Several point mutations affecting the ROS1 kinase domain have been identified in the clinical setting, but their impact requires further exploration, particularly in improved pre-clinical models. Given the scarcity of solid pre-clinical models to approach rare cancer subtypes like ROS1 + NSCLC, CRISPR/Cas9 technology allows the introduction of mutations in patient-derived cell lines for which resistant variants are difficult to obtain due to the low prevalence of cases within the clinical setting. METHODS: In the SLC34A2-ROS1 rearranged NSCLC cell line HCC78, we knocked-in through CRISPR/Cas9 technology three ROS1 drug resistance-causing mutations: G2032R, L2026M and S1986Y. Such variants are located in different functional regions of the ROS1 kinase domain, thus conferring TKI resistance through distinct mechanisms. We then performed pharmacological assays in 2D and 3D to assess the cellular response of the mutant lines to crizotinib, entrectinib, lorlatinib, repotrectinib and ceritinib. In addition, immunoblotting assays were performed in 2D-treated cell lines to determine ROS1 phosphorylation and MAP kinase pathway activity. The area over the curve (AOC) defined by the normalized growth rate (NGR_fit) dose-response curves was the variable used to quantify the cellular response towards TKIs. RESULTS: Spheroids derived from ROS1G2032R cells were significantly more resistant to repotrectinib (AOC fold change = - 7.33), lorlatinib (AOC fold change = - 6.17), ceritinib (AOC fold change = - 2.8) and entrectinib (AOC fold change = - 2.02) than wild type cells. The same cells cultured as a monolayer reflected the inefficacy of crizotinib (AOC fold change = - 2.35), entrectinib (AOC fold change = - 2.44) and ceritinib (AOC fold change = - 2.12) in targeting the ROS1 G2032R mutation. ROS1L2026M cells showed also remarkable resistance both in monolayer and spheroid culture compared to wild type cells, particularly against repotrectinib (spheroid AOC fold change = - 2.19) and entrectinib (spheroid AOC fold change = - 1.98). ROS1S1986Y cells were resistant only towards crizotinib in 2D (AOC fold change = - 1.86). Overall, spheroids showed an increased TKI sensitivity compared to 2D cultures, where the impact of each mutation that confers TKI resistance could be clearly distinguished. Western blotting assays qualitatively reflected the patterns of response towards TKI observed in 2D culture through the levels of phosphorylated-ROS1. However, we observed a dose-response increase of phosphorylated-Erk1/2, suggesting the involvement of the MAPK pathway in the mediation of apoptosis in HCC78 cells. CONCLUSION: In this study we knock-in for the first time in a ROS1 + patient-derived cell line, three different known resistance-causing mutations using CRISPR/Cas9 in the endogenous translocated ROS1 alleles. Pharmacological assays performed in 2D and 3D cell culture revealed that spheroids are more sensitive to TKIs than cells cultured as a monolayer. This direct comparison between two culture systems could be done thanks to the implementation of normalized growth rates (NGR) to uniformly quantify drug response between 2D and 3D cell culture. Overall, this study presents the added value of using spheroids and positions lorlatinib and repotrectinib as the most effective TKIs against the studied ROS1 resistance point mutations.


Aminopyridines , Benzamides , Carcinoma, Non-Small-Cell Lung , Indazoles , Lactams , Lung Neoplasms , Pyrazoles , Pyrimidines , Sulfones , Humans , Protein-Tyrosine Kinases/genetics , Crizotinib , CRISPR-Cas Systems/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Proto-Oncogene Proteins , Drug Resistance
...